Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924931

RESUMO

Chloroviruses are unusual among viruses infecting eukaryotic organisms in that they must, like bacteriophages, penetrate a rigid cell wall to initiate infection. Chlorovirus PBCV-1 infects its host, Chlorella variabilis NC64A by specifically binding to and degrading the cell wall of the host at the point of contact by a virus-packaged enzyme(s). However, PBCV-1 does not use any of the five previously characterized virus-encoded polysaccharide degrading enzymes to digest the Chlorella host cell wall during virus entry because none of the enzymes are packaged in the virion. A search for another PBCV-1-encoded and virion-associated protein identified protein A561L. The fourth domain of A561L is a 242 amino acid C-terminal domain, named A561LD4, with cell wall degrading activity. An A561LD4 homolog was present in all 52 genomically sequenced chloroviruses, infecting four different algal hosts. A561LD4 degraded the cell walls of all four chlorovirus hosts, as well as several non-host Chlorella spp. Thus, A561LD4 was not cell-type specific. Finally, we discovered that exposure of highly purified PBCV-1 virions to A561LD4 increased the specific infectivity of PBCV-1 from about 25-30% of the particles forming plaques to almost 50%. We attribute this increase to removal of residual host receptor that attached to newly replicated viruses in the cell lysates.


Assuntos
Parede Celular/metabolismo , Chlorella/metabolismo , Chlorella/virologia , DNA Ligases/metabolismo , Interações Hospedeiro-Patógeno , Phycodnaviridae/fisiologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Clorofila/metabolismo , DNA Ligases/química , DNA Ligases/genética , Ativação Enzimática , Phycodnaviridae/classificação , Phycodnaviridae/genética , Phycodnaviridae/ultraestrutura , Filogenia , Especificidade da Espécie , Proteínas Virais/química , Proteínas Virais/genética , Vírion , Ligação Viral
2.
Cytometry A ; 95(5): 534-548, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31017743

RESUMO

Due to the heterogeneity of viruses and their hosts, a comprehensive view of viral infection is best achieved by analyzing large populations of infected cells. However, information regarding variation in infected cell populations is lost in bulk measurements. Motivated by an interest in the temporal progression of events in virally infected cells, we used image flow cytometry (IFC) to monitor changes in Acanthamoeba polyphaga cells infected with Mimivirus. This first use of IFC to study viral infection required the development of methods to preserve morphological features of adherent amoeba cells prior to detachment and analysis in suspension. It also required the identification of IFC parameters that best report on key events in the Mimivirus infection cycle. The optimized IFC protocol enabled the simultaneous monitoring of diverse processes including generation of viral factories, transport, and fusion of replication centers within the cell, accumulation of viral progeny, and changes in cell morphology for tens of thousands of cells. After obtaining the time windows for these processes, we used IFC to evaluate the effects of perturbations such as oxidative stress and cytoskeletal disruptors on viral infection. Accurate dose-response curves could be generated, and we found that mild oxidative stress delayed multiple stages of virus production, but eventually infection processes occurred with approximately the same amplitudes. We also found that functional actin cytoskeleton is required for fusion of viral replication centers and later for the production of viral progeny. Through this report, we demonstrate that IFC offers a quantitative, high-throughput, and highly robust approach to study viral infection cycles and virus-host interactions. © The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Acanthamoeba/virologia , Citometria por Imagem/métodos , Infecções/virologia , Mimiviridae/fisiologia , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citoesqueleto/metabolismo , Interações Hospedeiro-Patógeno , Cinética , Estresse Oxidativo , Tiazolidinas/farmacologia
3.
PLoS Pathog ; 13(8): e1006562, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28850602

RESUMO

A fundamental stage in viral infection is the internalization of viral genomes in host cells. Although extensively studied, the mechanisms and factors responsible for the genome internalization process remain poorly understood. Here we report our observations, derived from diverse imaging methods on genome internalization of the large dsDNA Paramecium bursaria chlorella virus-1 (PBCV-1). Our studies reveal that early infection stages of this eukaryotic-infecting virus occurs by a bacteriophage-like pathway, whereby PBCV-1 generates a hole in the host cell wall and ejects its dsDNA genome in a linear, base-pair-by-base-pair process, through a membrane tunnel generated by the fusion of the virus internal membrane with the host membrane. Furthermore, our results imply that PBCV-1 DNA condensation that occurs shortly after infection probably plays a role in genome internalization, as hypothesized for the infection of some bacteriophages. The subsequent perforation of the host photosynthetic membranes presumably enables trafficking of viral genomes towards host nuclei. Previous studies established that at late infection stages PBCV-1 generates cytoplasmic organelles, termed viral factories, where viral assembly takes place, a feature characteristic of many large dsDNA viruses that infect eukaryotic organisms. PBCV-1 thus appears to combine a bacteriophage-like mechanism during early infection stages with a eukaryotic-like infection pathway in its late replication cycle.


Assuntos
Chlorella/virologia , Infecções por Vírus de DNA , Interações Hospedeiro-Parasita/fisiologia , Phycodnaviridae/fisiologia , Montagem de Vírus/fisiologia , DNA Viral/fisiologia , Imunofluorescência , Imageamento Tridimensional , Microscopia Eletrônica de Transmissão , Phycodnaviridae/ultraestrutura , Reação em Cadeia da Polimerase
4.
J Virol ; 90(21): 10039-10047, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581975

RESUMO

The recent discovery of multiple giant double-stranded DNA (dsDNA) viruses blurred the consensual distinction between viruses and cells due to their size, as well as to their structural and genetic complexity. A dramatic feature revealed by these viruses as well as by many positive-strand RNA viruses is their ability to rapidly form elaborate intracellular organelles, termed "viral factories," where viral progeny are continuously generated. Here we report the first isolation of viral factories at progressive postinfection time points. The isolated factories were subjected to mass spectrometry-based proteomics, bioinformatics, and imaging analyses. These analyses revealed that numerous viral proteins are present in the factories but not in mature virions, thus implying that multiple and diverse proteins are required to promote the efficiency of viral factories as "production lines" of viral progeny. Moreover, our results highlight the dynamic and highly complex nature of viral factories, provide new and general insights into viral infection, and substantiate the intriguing notion that viral factories may represent the living state of viruses. IMPORTANCE Large dsDNA viruses such as vaccinia virus and the giant mimivirus, as well as many positive-strand RNA viruses, generate elaborate cytoplasmic organelles in which the multiple and diverse transactions required for viral replication and assembly occur. These organelles, which were termed "viral factories," are attracting much interest due to the increasing realization that the rapid and continuous production of viral progeny is a direct outcome of the elaborate structure and composition of the factories, which act as efficient production lines. To get new insights into the nature and function of viral factories, we devised a method that allows, for the first time, the isolation of these organelles. Analyses of the isolated factories generated at different times postinfection by mass spectrometry-based proteomics provide new perceptions of their role and reveal the highly dynamic nature of these organelles.

5.
Cell Microbiol ; 18(1): 3-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26248343

RESUMO

The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway.


Assuntos
Interações Hospedeiro-Patógeno , Paramecium/virologia , Phycodnaviridae/fisiologia , Replicação Viral , Animais , Humanos , Substâncias Macromoleculares/ultraestrutura , Camundongos , Mimiviridae/fisiologia , Imagem Óptica , Phycodnaviridae/crescimento & desenvolvimento , Vaccinia virus/fisiologia
6.
Virology ; 466-467: 3-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24996494

RESUMO

The discovery of giant DNA viruses and the recent realization that such viruses are diverse and abundant blurred the distinction between viruses and cells. These findings elicited lively debates on the nature and origin of viruses as well as on their potential roles in the evolution of cells. The following essay is, however, concerned with new insights into fundamental structural and physical aspects of viral replication that were derived from studies conducted on large DNA viruses. Specifically, the entirely cytoplasmic replication cycles of Mimivirus and Vaccinia are discussed in light of the highly limited trafficking of large macromolecules in the crowded cytoplasm of cells. The extensive spatiotemporal order revealed by cytoplasmic viral factories is described and contended to play an important role in promoting the efficiency of these 'nuclear-like' organelles. Generation of single-layered internal membrane sheets in Mimivirus and Vaccinia, which proceeds through a novel membrane biogenesis mechanism that enables continuous supply of lipids, is highlighted as an intriguing case study of self-assembly. Mimivirus genome encapsidation was shown to occur through a portal different from the 'stargate' portal that is used for genome release. Such a 'division of labor' is proposed to enhance the efficacy of translocation processes of very large viral genomes. Finally, open questions concerning the infection cycles of giant viruses to which future studies are likely to provide novel and exciting answers are discussed.


Assuntos
Vírus de DNA/genética , Eucariotos/virologia , Genoma Viral/genética , Estruturas Virais , Replicação Viral , Amoeba/virologia , Membrana Celular/virologia , Citoplasma/virologia , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , DNA Viral/genética , Evolução Molecular , Microscopia Eletrônica de Transmissão e Varredura , Mimiviridae/genética , Mimiviridae/fisiologia , Mimiviridae/ultraestrutura , Montagem de Vírus
7.
J Biol Chem ; 288(35): 25659-25667, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23884460

RESUMO

Genome condensation is increasingly recognized as a generic stress response in bacteria. To better understand the physiological implications of this response, we used fluorescent markers to locate specific sites on Escherichia coli chromosomes following exposure to cytotoxic stress. We find that stress-induced condensation proceeds through a nonrandom, zipper-like convergence of sister chromosomes, which is proposed to rely on the recently demonstrated intrinsic ability of identical double-stranded DNA molecules to specifically identify each other. We further show that this convergence culminates in spatial proximity of homologous sites throughout chromosome arms. We suggest that the resulting apposition of homologous sites can explain how repair of double strand DNA breaks might occur in a mechanism that is independent of the widely accepted yet physiologically improbable genome-wide search for homologous templates. We claim that by inducing genome condensation and orderly convergence of sister chromosomes, diverse stress conditions prime bacteria to effectively cope with severe DNA lesions such as double strand DNA breaks.


Assuntos
Cromossomos Bacterianos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Escherichia coli/metabolismo , Genoma Bacteriano/fisiologia , Cromossomos Bacterianos/genética , Escherichia coli/genética
8.
PLoS Pathog ; 9(5): e1003367, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737745

RESUMO

Although extensively studied, the structure, cellular origin and assembly mechanism of internal membranes during viral infection remain unclear. By combining diverse imaging techniques, including the novel Scanning-Transmission Electron Microscopy tomography, we elucidate the structural stages of membrane biogenesis during the assembly of the giant DNA virus Mimivirus. We show that this elaborate multistage process occurs at a well-defined zone localized at the periphery of large viral factories that are generated in the host cytoplasm. Membrane biogenesis is initiated by fusion of multiple vesicles, ~70 nm in diameter, that apparently derive from the host ER network and enable continuous supply of lipid components to the membrane-assembly zone. The resulting multivesicular bodies subsequently rupture to form large open single-layered membrane sheets from which viral membranes are generated. Membrane generation is accompanied by the assembly of icosahedral viral capsids in a process involving the hypothetical major capsid protein L425 that acts as a scaffolding protein. The assembly model proposed here reveals how multiple Mimivirus progeny can be continuously and efficiently generated and underscores the similarity between the infection cycles of Mimivirus and Vaccinia virus. Moreover, the membrane biogenesis process indicated by our findings provides new insights into the pathways that might mediate assembly of internal viral membranes in general.


Assuntos
Acanthamoeba/virologia , Capsídeo/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Mimiviridae/fisiologia , Acanthamoeba/metabolismo , Acanthamoeba/ultraestrutura , Capsídeo/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Mimiviridae/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 107(13): 5978-82, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20231474

RESUMO

Poxviruses are considered to be unique among all DNA viruses, because their infection cycle is carried out exclusively in the host cytoplasm. Such an infection strategy is of interest, because it necessitates generation of elaborate factories in which viral replication and assembly are promoted. By using diverse imaging techniques, we show that the infection cycle of the largest virus currently identified, the Acanthamoeba polyphaga Mimivirus, similarly occurs exclusively in the host cytoplasm. We further show that newly synthesized mRNAs accumulate at discrete cytoplasmic sites that are distinct from the sites where viral replication occurs, and this is observed in vaccinia infection. By revealing substantial physiologic similarity between poxviruses and Mimivirus and thus, implying that an entirely cytoplasmic viral replication might be more common than generally considered, these findings underscore the ability of DNA viruses to generate large and elaborate replication factories.


Assuntos
Acanthamoeba/virologia , Citoplasma/virologia , Mimiviridae/fisiologia , Acanthamoeba/ultraestrutura , Citoplasma/ultraestrutura , Genoma Viral , Humanos , Microscopia Eletrônica de Transmissão , Mimiviridae/genética , Mimiviridae/ultraestrutura , Poxviridae/fisiologia , Transcrição Gênica , Vacínia/virologia , Replicação Viral/genética , Replicação Viral/fisiologia
10.
Nat Rev Microbiol ; 7(10): 748-55, 2009 10.
Artigo em Inglês | MEDLINE | ID: mdl-19756013

RESUMO

Double-strand DNA breaks (DSBs) are the most detrimental lesion that can be sustained by the genetic complement, and their inaccurate mending can be just as damaging. According to the consensual view, precise DSB repair relies on homologous recombination. Here, we review studies on DNA repair, chromatin diffusion and chromosome confinement, which collectively imply that a genome-wide search for a homologous template, generally thought to be a pivotal stage in all homologous DSB repair pathways, is improbable. The implications of this assertion for the scope and constraints of DSB repair pathways and for the ability of diverse organisms to cope with DNA damage are discussed.


Assuntos
Bactérias/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Genética , Animais , Cromossomos Bacterianos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Genoma Bacteriano , Humanos , Estresse Fisiológico
11.
Biochemistry ; 48(22): 4753-61, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19397367

RESUMO

The bacterium Blastochloris viridis carries one of the simplest photosynthetic systems, which includes a single light-harvesting complex that surrounds the reaction center, membrane soluble quinones, and a soluble periplasmic protein cytochrome c(2) that shuttle between the reaction center and the bc(1) complex and act as electron carriers, as well as the ATP synthase. The close arrangement of the photosynthetic membranes in Bl. viridis, along with the extremely tight arrangement of the photosystems within these membranes, raises a fundamental question about the diffusion of the electron carriers. To address this issue, we analyzed the structure and response of the Bl. viridis photosynthetic system to various light conditions, by using a combination of electron microscopy, whole-cell cryotomography, and spectroscopic methods. We demonstrate that in response to high light intensities, the ratio of both cytochrome c(2) and bc(1) complexes to the reaction centers is increased. The shorter membrane stacks, along with the notion that the bc(1) complex is located at the highly curved edges of these stacks, result in a smaller average distance between the reaction centers and the bc(1) complexes, leading to shorter pathways of cytochrome c(2) between the two complexes. Under anaerobic conditions, the slow diffusion rate is further mitigated by keeping most of the quinone pool reduced, resulting in a concentration gradient of quinols that allows for a constant supply of theses electron carriers to the bc(1) complex.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Rodopseudomonas/química , Adaptação Fisiológica , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/ultraestrutura , Difusão , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Fluorometria , Cinética , Luz , Fotoquímica , Complexo de Proteínas do Centro de Reação Fotossintética/ultraestrutura , Rodopseudomonas/enzimologia , Rodopseudomonas/crescimento & desenvolvimento , Rodopseudomonas/ultraestrutura , Tilacoides/química , Tilacoides/enzimologia , Tilacoides/ultraestrutura
12.
J Bacteriol ; 191(5): 1439-45, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19074379

RESUMO

The organization of chromatin has a major impact on cellular activities, such as gene expression. For bacteria, it was suggested that the spatial organization of the genetic material correlates with transcriptional levels, implying a specific architecture of the chromosome within the cytoplasm. Accordingly, recent technological advances have emphasized the organization of the genetic material within nucleoid structures. Gemmata obscuriglobus, a member of the phylum Planctomycetes, exhibits a distinctive nucleoid structure in which chromatin is encapsulated within a discrete membrane-bound compartment. Here, we show that this soil and freshwater bacterium tolerates high doses of UV and ionizing radiation. Cryoelectron tomography of frozen hydrated sections and electron microscopy of freeze-substituted cells have indicated a more highly ordered condensed-chromatin organization in actively dividing and stationary-phase G. obscuriglobus cells. These three-dimensional analyses revealed a complex network of double membranes that engulf the condensed DNA. Bioinformatics analysis has revealed the existence of a putative component involved in nonhomologous DNA end joining that presumably plays a role in maintaining chromatin integrity within the bacterium. Thus, our observations further support the notion that packed chromatin organization enhances radiation tolerance.


Assuntos
Bactérias/efeitos da radiação , Cromatina/química , Cromatina/ultraestrutura , Tolerância a Radiação , Radiação Ionizante , Raios Ultravioleta , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/ultraestrutura , DNA Bacteriano/genética , Água Doce/microbiologia , Microscopia Eletrônica , Microbiologia do Solo , Tomografia
13.
PLoS Biol ; 6(5): e114, 2008 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-18479185

RESUMO

Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the "stargate", allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.


Assuntos
Acanthamoeba/virologia , Empacotamento do DNA , Vírus de DNA/fisiologia , DNA Viral/metabolismo , Animais , Capsídeo/metabolismo , Vírus de DNA/ultraestrutura , Genoma Viral , Microscopia Eletrônica , Internalização do Vírus
14.
J Struct Biol ; 161(3): 393-400, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17977019

RESUMO

During the photosynthetic process, highly organized membranal assemblies convert light into biochemical energy with high efficiency. We have used whole-mount cryo-electron tomography to study the intracellular architecture of the photosynthetic membranes of the anaerobic purple photosynthetic bacterium Rhodopseudomonas viridis, as well as the organization of the photosynthetic units within the membranes. Three-dimensional reconstruction demonstrates a continuity of the plasma membrane with the photosynthetic membranes that form tunnel-like structures with an average diameter of 31 nm+/-8 nm at the connection sites. The spacing between the photosynthetic membranes at their cytoplasmic faces was found to be 11 nm, thus enforcing a highly close packaging of the photosynthetic membranes. Analysis of successive tomographic slices allowed for derivation of the spacing between adjacent photosynthetic core complexes from a single-layered photosynthetic membrane, in situ. This analysis suggests that most, if not all, photosynthetic membranes in R. viridis are characterized by a similar two-dimensional hexagonal lattice organization.


Assuntos
Microscopia Crioeletrônica/métodos , Membranas Intracelulares/ultraestrutura , Complexo de Proteínas do Centro de Reação Fotossintética/ultraestrutura , Rodopseudomonas/ultraestrutura , Tomografia/métodos
15.
Annu Rev Microbiol ; 61: 309-29, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17896876

RESUMO

Bacterial cells contain many large, spatially extended assemblies of ions, molecules, and macromolecules, called hyperstructures, that are implicated in functions that range from DNA replication and cell division to chemotaxis and secretion. Interactions between these hyperstructures would create a level of organization intermediate between macromolecules and the cell itself. To explore this level, a taxonomy is needed. Here, we describe classification criteria based on the form of the hyperstructure and on the processes responsible for this form. These processes include those dependent on coupled transcription-translation, protein-protein affinities, chromosome site-binding by protein, and membrane structures. Various combinations of processes determine the formation, maturation, and demise of many hyperstructures that therefore follow a trajectory within the space of classification by form/process. Hence a taxonomy by trajectory may be desirable. Finally, we suggest that working toward a taxonomy based on speculative interactions between hyperstructures promises most insight into life at this level.


Assuntos
Bactérias/classificação , Bactérias/citologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Metabolismo Energético , Biossíntese de Proteínas , Transcrição Gênica
16.
Orig Life Evol Biosph ; 37(4-5): 429-32, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17624805

RESUMO

Five common assumptions about the first cells are challenged by the pre-biotic ecology model and are replaced by the following propositions: firstly, early cells were more complex, more varied and had a greater diversity of constituents than modern cells; secondly, the complexity of a cell is not related to the number of genes it contains, indeed, modern bacteria are as complex as eukaryotes; thirdly, the unit of early life was an 'ecosystem' rather than a 'cell'; fourthly, the early cell needed no genes at all; fifthly, early life depended on non-covalent associations and on catalysts that were not confined to specific reactions. We present here the outlines of a theory that connects findings about modern bacteria with speculations about their origins.


Assuntos
Modelos Biológicos , Bactérias
17.
Microbiol Mol Biol Rev ; 71(1): 230-53, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17347523

RESUMO

The levels of organization that exist in bacteria extend from macromolecules to populations. Evidence that there is also a level of organization intermediate between the macromolecule and the bacterial cell is accumulating. This is the level of hyperstructures. Here, we review a variety of spatially extended structures, complexes, and assemblies that might be termed hyperstructures. These include ribosomal or "nucleolar" hyperstructures; transertion hyperstructures; putative phosphotransferase system and glycolytic hyperstructures; chemosignaling and flagellar hyperstructures; DNA repair hyperstructures; cytoskeletal hyperstructures based on EF-Tu, FtsZ, and MreB; and cell cycle hyperstructures responsible for DNA replication, sequestration of newly replicated origins, segregation, compaction, and division. We propose principles for classifying these hyperstructures and finally illustrate how thinking in terms of hyperstructures may lead to a different vision of the bacterial cell.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Bactérias/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas
18.
J Struct Biol ; 156(2): 311-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16935006

RESUMO

For enzymatic activities to be effectively carried out, basic prerequisites must be met. Many enzymatic tasks require continuous consumption and dissipation of energy, sometimes in massive amounts. Some activities, such as DNA replication, transcription, and repair through homologous recombination rely upon templates that provide the information required for these transactions. Yet, circumstances where intracellular energy pools are severely depleted, or where intact templates are not available, frequently occur. Moreover, the fact that in order to reach their targets, enzymes must cope with an extremely crowded and viscous cellular milieu that drastically slows down their diffusion is often neglected. These impediments are particularly evident under stress conditions such as prolonged starvation or continuous exposure to DNA-damaging agents. Here we survey recent studies, which imply that when enzymatically-mediated DNA repair pathways are hindered, alternative strategies are deployed, whose common denominator is the reorganization of bacterial nucleoids into morphologies that promote DNA repair and protection.


Assuntos
Bacillus subtilis/genética , Cromossomos Bacterianos/ultraestrutura , Reparo do DNA/fisiologia , Deinococcus/genética , Escherichia coli/genética , Proteínas de Bactérias/fisiologia , Cromatina/ultraestrutura , Cristalização , Quebras de DNA de Cadeia Dupla , DNA Bacteriano/fisiologia , Proteínas de Ligação a DNA/fisiologia , Ingestão de Energia/fisiologia , Manganês/fisiologia , Modelos Biológicos , Recombinases Rec A/fisiologia , Recombinação Genética/fisiologia , Esporos Bacterianos/genética
20.
Bioessays ; 28(4): 399-412, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16547956

RESUMO

We hypothesize that life began not with the first self-reproducing molecule or metabolic network, but as a prebiotic ecology of co-evolving populations of macromolecular aggregates (composomes). Each composome species had a particular molecular composition resulting from molecular complementarity among environmentally available prebiotic compounds. Natural selection acted on composomal species that varied in properties and functions such as stability, catalysis, fission, fusion and selective accumulation of molecules from solution. Fission permitted molecular replication based on composition rather than linear structure, while fusion created composomal variability. Catalytic functions provided additional chemical novelty resulting eventually in autocatalytic and mutually catalytic networks within composomal species. Composomal autocatalysis and interdependence allowed the Darwinian co-evolution of content and control (metabolism). The existence of chemical interfaces within complex composomes created linear templates upon which self-reproducing molecules (such as RNA) could be synthesized, permitting the evolution of informational replication by molecular templating. Mathematical and experimental tests are proposed.


Assuntos
Evolução Biológica , Ecologia , Origem da Vida , Catálise , Compartimento Celular , Ecossistema , Modelos Biológicos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...